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Abstract

Recently, we have derived stochastic realization
methods for a system with exogenous inputs [4, 1] and
the relevance of stochastic realization to subspace iden-
tification of state-space systems has shown in [4]. In this
paper, we briefly review the basis of stochastic subspace
identification algorithm {1, 2] and present some simula-
tions results to compare the performance and compu-
tational loads of the realization based algorithms, the
CLS algorithm [3], and the basic 4SID [7].

Stochastic Realization with
Exogenous Inputs

In this section, we summarize the stochastic realiza-
tion method based on [1, 2]. Consider a discrete-time
stochastic linear system with the m x 1 input vector
u(t) and the px 1 output vector y(t). It is assumed that
{u(t), y(¥), t = 0,%1,---} are jointly wide sense sta-
tionary processes with zero mean and finite covariance
matrices.

Let t be the present time and k a positive integer.
We then define the stacked vectors of past and future
inputs as

u(t~ 1) o,
u(t — u(t +
u_(t) = ( . ) , ug(t) = :
u(t+k-1)

and y_(t) and y4(t), the stacked vectors of past and
future of outputs, are defined similarly. For notational
simplicity, we also define the past and future as

y-(1)

Theorem 1 Suppose that p(t) Nuy(t) = 0. Then the
optimal LS predictor f(t), of the future output vector
f(t), based on the past input-output data p(t) and fu-
ture inputs 4 (t), is given by the orthogonal projection

p(t) = [ u-(t) ] L5 = e (t)

£(1) = f()lp() V u (t) = Tp(t) + Rus(®) (1)
0-7803-4394-8/98 $10.00 © 1998 IEEE

where II, & are given by

Top Zpu |
m a=1%;, 2| 35 | @
up uy
It can be also shown that the operators II and ® satisfy
the discrete Wiener-Hopf type equations

OZppiyu = Zpplur RTuulp = Tpulp 3)

where Ypp1u, Zuu|p are the conditional covariance opera-
tors of the past vector p(t) given u4(t) and of the future
input u4(t) given the past p(t), and are defined by

Lale = E{(a|cl)(b|cJ—)T} =Zgp — Eaczc—clzcb

where alct 1= a — (alc). u]

Let {y(t), u(t)} be the jointly stationary regular full
rank process. Suppose that there is no feedback from
y to u. Then it can be shown that ® is block lower-
triangular, so that it is a causal operator.

Let rankX;p, = n. Consider the Cholesky factor-
izations Epply = LpL} and Tysy = LyLY. Define
e4(t) = L7 (flust)(t), e-(t) = L (plupt)(®). Tt
then follows that E{e4 (t)eT(t)} = L7 'TypuL; 7. Sup-
pose that the SVD of the normalized block Hankel ma-
trix L7 Sy, L; T be given by

LS l;T = USVT (4)

where UTU = I,, VTV = I, and £ = diag(51,--,n)
is a diagonal matrix with nonzero singular values (1 >
G1 2> -+ 2 Gn > 0). We see that ofs are the canonical
correlation coefficients between the conditional random

vectors (flust)(t) and (pluyt)(t).
For the SVD of (4), we define the extended observ-
ability and controllability matrices as

0= LyULY?, C.=EV2yT LT (5)

where rankQ = rankC = n. Then the block Hankel
matrix Xy, has a decomposition X, = OC. Since
I=x fPl“E;pllu’ the oblique projection is expressed as

p(t) = O=(t) (6)

1850



where the state vector is now defined to be the n x 1
vector

2(t) = CZo,p() = EVAVILME)  (7)

Theorem 2 Suppose that there is no feedback from
the output y(t) to the input.u(t). We assume that
rankZ;,, = n. Then in terms of a state vector z(t)
of (7), we have a stochastic realization of the form’

z(t+1) = Az(t) + Bu(t) + Ke(t) (8)
y(t) = Cz(t) + Du(t) + () 9)

Simulation Results
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Fig. 1 The plant model

Some results of computer simulations are presented
to show the performance of five subspace identification
algorithms.

1) Basic 4SID is due to Verhaegen[7], where the
Cholesky factorization is used to get L factor.

2) COV-a is the algorithm based on the stochastic re-
alization, where the system matrices are estimated
by using the estimate of state vector (see (7)).

3) COV-b is the algorithm based on the stochastic re-
alization, where the system matrices are estimated

by using O and & (see (3) and (5)).

4) CLS-a is the algorithm based on the constraint
least-squares algorithm due to Peternell et al[3]
and using the estimation of state vector (see (7)).

5) CLS-b is the constraint least-squares algorithm and
using O and ® (see (3) and (5)).

We consider a 5th-order SISO system shown in Fig.

1 [9], where u(t) is the input, and w(t) and w(t) are

white noises with mean zeros. The transfer function is
given by G(z) = B(z)/A(z), where

B(z) = 0.02752~* + 0.551z~°
A(z) = 1—2.34432"! +3.08127% — 2.52742°
+1.241527* — 0.36862~°

The G(z) has a zero at z = —2 and poles at z = 0.9,
0.8e%7, 0.8e%1-%1,

Table 1: The number of flops for 50 simulation runs

COV-a CLS-a Basic 4SID LQ

Flops 1.58x10®° 2.23x10° 5.26 x 107  6.42 x 10°

In the present simulation studies, the input is cho-
sen as u(t) = Up Z::_E_l sin(w;t), where the frequencies
w;'s are uniformly spaced in the interval (0.1, 3)(rad)
and where Uy is adjusted to yield 02 = 1. The noise
variances are chosen as 02 = o2 = (0.05)%. It follows
from the PE condition for Upjg;—; that £ < 10. The
performance is evaluated by the mean square error

1 M 10 .
=23 (-t wr
I=1 \j=1

where N = 200, 400, 1000, 2000, and 6; denotes the true
parameter and 6;(l, N) is the estimate of ; at I-th run
with the number of data N, and where M denotes the
number of simulation runs.

Fig. 2 depicts the performance of five algorithms,
where k = 8, M = 100. In this case, COV-a and COV-b
show similar performance, but the performance of CLS-
a and CLS-b is rather different. In order to analyze
this fact, we have simulated CLS-a and CLS-b methods
for several different k’s, where the input is a sum of
15 sinusoids and M = 50, N = 1000. We see from
Fig. 3 that both methods give similar performance for
k greater than 10, but for the smaller k, CLS-a shows
better performance. In Figs. 4 and 5, the pole estimates
by COV-a and CLS-a methods are depicted for k£ = 8,
N = 1000. We see that COV-a gives a rather scattered
pole estimates, but CLS-a yields better pole estimates
with a smaller variability.

Table 1 shows the number of flops of four algorithms,
where LQ denotes the algorithm based on the LQ fac-
torization of the Hankel matrix [5, 6, 7). The number of
flops includes all the computations for the whole simu-
lations by each algorithm for £ = 8, M = 50, N = 1000.
It therefore follows that by using the Cholesky factor-
ization [2], we get a great computational saving over the
method based on LQ factorization. Also, it is rather sur-
prising to find that CLS-a is ten times more expensive
than COV-a.
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Fig. 2 The performance of five algorithms
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Fig. 3 The performance vs. number of rows
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Fig. 4 The pole estimates by COV-a
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Fig. 5 The pole estimates by CLS-a



