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Abstract 

Recently, we have derived stochastic realization 
methods for a system with exogenous inputs [4, 11 and 
the relevance of stochastic realization to subspace iden- 
tification of state-space systems has shown in [4]. In this 
paper, we briefly review the basis of stochastic subspace 
identification algorithm 11, 21 and present some simula- 
tions results to compare the performance and compu- 
tational loads of the realization based algorithms, the 
CLS algorithm [3], and the basic 4SID [7]. 

Stochastic Realization with 
Exogenous Inputs 

In this section, we summarize the stochastic realiza- 
tion method based on [I, 21. Consider a discrete-time 
stochastic linear system with the rn x 1 input vector 
u( t )  and the p x 1 output vector y(t). It is assumed that 
{u ( t ) ,  y(t), t = O , f l ,  .. 9 )  are jointly wide sense sta- 
tionary processes with zero mean and finite covariance 
matrices. 

Let t be the present time and k a positive integer. 
We then define the stacked vectors of past and future 
inputs as 

u-( t )  := [ :y] , u+(t)  := [ f l )  ] 
u(t + k - 1) 

and y-(t) and yt(t), the stacked vectors of past and 
future of outputs, are defined similarly. For notational 
simplicity, we also define the past and fi ture its 

, f(t)  := y+(t) dt )  := [ y-(t) ] 
Theorem 1 Suppose that p ( t )  n ut( t )  = 0. Then the 
optimal LS predictor f̂ (t), of the future output vector 
f(t) ,  based on the past input-output data p ( t )  and fu- 
ture inputs u+(t), is given by the orthogonal projection 

i(t) = f(t)lP(t) v u+(t) = nP(t) + @ut(t) (1) 
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where II, @ are given by 

-1  

[rI 'PI = [E,, C,,] [ Cup C,, ] (2) 

It can be also shown that the operators ll and 0 satisfy 
the discrete Wiener-Hopf type equations 

HCppIyu = Cfplul @'cuulp = Cfulp (3) 

where Cpplu, Cuulp are the conditional covariance opera- 
tors of the past vector p ( t )  given u+(t) and of the future 
input u+(t)  given the past p ( t ) ,  and are defined by 

C,alc := E{(aICL)(blCL)T} = c a b  - C,,C,-,'Cca 

where aJc* := a - (ulc).  0 
Let {y(t), u( t ) }  be the jointly stationary regular full 

rank process. Suppose that there is no feedback from 
y to  U .  Then it can be shown that is block lower- 
triangular, so that it is a causal operator. 

Let rankCjplu = n. Consider the Cholesky factor- 
izations CP,lu = LpLT and C f f l , ,  = LjLF .  Define 

then follows that E{E+(t)E?(t)} = LflCj,luL;T. Sup- 
pose that the SVD of the normalized block Hankel ma- 
trix LT'Cjpl,L;T be given by 

E + @ )  := L;1(fIU+L)(t), a - ( t )  := L,l(plu+*)(t). It 

(4) 

where UTU = I,,, VTV = I,, and 2 = diag(81,...,8,,) 
is a diagonal matrix with nonzero singular values (1 1 
51 1 ... 2 5,, > 0). We see that 6:s are the canonical 
correlation coefficients between the conditional random 
vectors (flu+')(t> and (p lu+l ) ( t ) .  

For the SVD of (4), we define the extended observ- 
ability and controllability matrices as 

0 := L f U W 2 ,  c := j y 2 V T L T  P (5) 

where rankU = rankC = n. Then the block Hankel 
matrix Cfplu has a decomposition Ejplu = OC. Since 
II = C,pluC&, the oblique projection is expressed as 

rrp(t )  = Oz(t)  ( 6 )  



where the state vector is now defined to be the n x 1 
vector 

z ( t )  = cc-' P P b  At) = 5'/'VTL,'p(t) (7) 

Theorem 2 Suppose that there is no feedback from 
the output y(t) to the input. u(t) .  We assume that 
rankCjplu = n. Then in terms of a state vector z ( t )  
of (7), we have a stochastic realization of the form- 

z(t + 1) = Az( t )  + Bu(t )  + K e ( t )  

y(t) = Cz(t) + Du(t) + e ( t )  

( 8 )  

(9) 

Simulation Results 

- 
Fig. 1 The plant model 

Some results of computer simulations are presented 
to show the performance of five subspace identification 
algorithms. 

Basic 4SID is due to Verhaegen[7], where the 
Cholesky factorization is used to get L factor. 

COV-a is the algorithm based on the stochastic re- 
alization, where the system matrices are estimated 
by using the estimate of state vector (see (7)). 

COV-b is the algorithm based on the stochastic re- 
alization, where the system matrices are estimated 
by using 0 and 0 (see (3) and (5)). 

CLS-a is the algorithm based on the constraint 
least-squares algorithm due to Peternell et a1.[3] 
and using the estimation of state vector (see (7)). 

CLS-b is the constraint least-squares algorithm and 
using 0 and CP (see (3) and (5)). 

Table 1: The number of flops for 50 simulation runs 

COV-a CLS-a Basic 4SID LQ 

Flops 1.58 x 10' 2.23 x log 5.26 x lo7 6.42 x lo8 

In the present simulation studies, the input is cho- 
&(wit), where the frequencies sen as u( t )  = U O C ~ = ~  

wi 's are uniformly spaced in the interval (O.l,3)(rad) 
and where U0 is adjusted to yield U," = 1. The noise 
variances are chosen as U: = cr," = (0.05)'. It follows 
from the PE condition for U012k-1 that IC 5 10. The 
performance is evaluated by the mean square error 
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where N = 200,400,1000,2000, and B j  denotes the true 
parameter and e,(/, N )  is the estimate of B ,  at I-th run 
with the number of data N, and where M denotes the 
number of simulation runs. 

Fig. 2 depicts the performance of five algorithms, 
where IC = 8, M = 100. In this case, COV-a and COV-b 
show similar performance, but the performance of CLS- 
a and CLS-b is rather different. In order to analyze 
this fact, we have simulated CLS-a and CLS-b methods 
for several different IC's, where the input is a sum of 
15 sinusoids and it4 = 50, N = 1000. We see from 
Fig. 3 that both methods give similar performance for 
IC greater than 10, but for the smaller I C ,  CLS-a shows 
better performance. In Figs. 4 and 5, the pole estimates 
by COV-a and CLS-a methods are depicted for IC = 8,  
N = 1000. We see that COV-a gives a rather scattered 
pole estimates, but CLS-a yields better pole estimates 
with a smaller variability. 

Table 1 shows the number of flops of four algorithms, 
where LQ denotes the algorithm based on the LQ fac- 
torization of the Hankel matrix [5, 6, 71. The number of 
flops includes all the computations for the whole simu- 
lations by each algorithm for IC = 8, M = 50, N = 1000. 
It therefore follows that by using the Cholesky factor- 
ization [2], we get a great computational saving over the 
method based on LQ factorization. Also, it is rather sur- 
prising to find that CLS-a is ten times more expensive 
than COV-a. 

We consider a 5th-order SISO system shown in Fig. 
1 [9], where u(t )  is the input, and w(t) and v(t)  are 
white noises with mean zeros. The transfer function is 
given by G ( z )  = B ( z ) / A ( z ) ,  where 

B ( z )  = 0 . 0 2 7 5 ~ - ~  + 0 . 5 5 1 ~ - ~  
A(z)  = 1 - 2.3443~-1 + 3.081z-' - 2 . 5 2 7 4 ~ - ~  
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Fig. 4 The pole estimates by COV-a 

Fig. 5 The pole estimates by CLS-a 
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